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We present a new thermodynamic coupling strategy for complex reacting flow in a low Mach
number framework. In such flows, the advection, diffusion, and reaction processes span a
broad range of time scales. In order to reduce splitting errors inherent to Strang splitting
approaches, we couple the processes with a multi-implicit spectral deferred correction strategy.
Our iterative scheme uses a series of relatively simple correction equations to reduce the error
in the solution. The new method retains the efficiencies of Strang splitting compared to a
traditional method of lines approach in that each process is discretized sequentially using a
numerical method well suited for its particular time scale. We demonstrate that the overall
scheme is second-order accurate and provides increased accuracy with less computational work
compared to Strang splitting for terrestrial and astrophysical flames. The overall framework
also sets the stage for higher-order coupling strategies.

Keywords: low Mach number combustion, spectral deferred corrections, Strang splitting,
flame simulations, detailed chemistry and kinetics

1. Introduction

In many reacting flows with complex chemistry and transport there is a wide dis-
parity in time scales associated with the advection, diffusion, and reaction (ADR)
processes. In such stiff systems, the reaction and diffusion processes often occur on
much faster time scales than advection, complicating any efforts at numerical sim-
ulation. Numerical coupling of these processes is particularly difficult for low Mach
number methods where we would like the time step to be based on the (relatively)
slow advection process. In such simulations, special care must be taken to properly
couple advection with the faster reaction and diffusion processes.

One successful coupling approach for low Mach number simulations is operator
splitting, and in particular Strang splitting [30]. In operator-split methods, the
equation system is divided arbitrarily into components that share specific mathe-
matical or numerical characteristics. Discretizations are then developed for each of
the components in isolation using numerical methods that can be more optimally
engineered. The complete system is evolved in time by applying the separate dis-
cretizations in an iterative or sequential fashion. The Strang-splitting algorithm in
particular defines a symmetric multi-stage operator sequence that achieves second-
order accuracy in time. Schemes of even higher order are possible, but require

∗Corresponding author. Email: AJNonaka@lbl.gov

ISSN: 1364-7830 print/ISSN 1741-3559 online
c© 200x Taylor & Francis
DOI: 10.1080/1364783YYxxxxxxxx
http://www.informaworld.com



December 8, 2011 12:54 Combustion Theory and Modelling paper

2 Nonaka et al.

special properties of the system, such as time reversibility (see [14] for a more
complete discussion of splitting schemes and their application).

From an implementation point of view, Strang splitting is attractive for the
combustion system because algorithms constructed for each of the numerical com-
ponents, complex in their own right, can be coupled together without significant
modification. For example, Najm and Knio [26] present a Strang-split algorithm for
the low Mach number reacting flow equations that combines a second-order Adams-
Bashforth for advection, a time-explicit Runge-Kutta-Chebyshev scheme for diffu-
sion, and the variable-order BDF scheme in VODE [8] for stiff ODEs describing
chemical reactions. Based on a similar strategy, Day and Bell [11] develop an alter-
native approach that uses a second-order Godunov advection scheme, semi-implicit
(Crank-Nicolson) diffusion, and VODE for reactions and demonstrate second-order
accuracy in an adaptive mesh refinement framework. Bell et al. [6] extend this work
to the astrophysical regime to perform low Mach number simulations of nuclear
flames in a white dwarf environment, which demonstrates that the approach is ro-
bust even when the reaction rates are extremely sensitive to temperature (scaling
with ∼ T 23), and the system satisfies a non-ideal equation of state.

Unfortunately, it is well-documented that operator-splitting approaches can suf-
fer from significant errors [21, 30] if the system components are coupled together
on a time scale that is much large than the scales of the fastest relevant physical
processes. For low Mach number flame systems in particular, these so-called “split-
ting errors” can be unacceptable, leading to incorrect flame propagation speeds,
numerically extinguished flames, etc., unless the integration time step is dramat-
ically reduced. Thus, in such cases, one loses the inherent advantage a low Mach
number approach since the time step must become significantly smaller than the
advective CFL limit.

An alternative to operator splitting algorithms are method-of-lines (MOL) ap-
proaches. With MOL, the spatial discretizations of all processes are written for-
mally as functions of time, and an ODE integrator is used to propagate the full
system forward. Since all processes are treated together, the MOL integration of
a stiff system must ultimately respect the fastest time scales exhibited by the sys-
tem. Due to the stiffness of the systems under consideration, a fully explicit MOL
approach would be prohibitively expensive. A fully implicit MOL approach elimi-
nates splitting errors, but results in a large system of coupled nonlinear equations
that are much more computationally expensive than the simpler systems appearing
in Strang splitting algorithms (e.g., [11]). Semi-implicit methods where, for exam-
ple, advection is treated explicitly and reactions are evaluated implicitly, can be
problematic for different reasons, depending on how diffusion is treated [3, 20]. If
diffusion is explicit, the system is subject to a more restrictive diffusive time step
constraint, whereas if diffusion is implicit, one must solve a large system of coupled
nonlinear equations due to the state-dependent transport coefficients. One class of
semi-implicit algorithms based on Runge-Kutta methods [4, 9, 20, 29], have been
used with success for reacting gas dynamics, but are difficult to construct for or-
der greater than four and are difficult to generalize to the case of more than two
time scales. Semi-implicit Runge-Kutta methods also preclude the user from using
specialized methods for individual processes.

In this paper, we present a new MOL coupling strategy for ADR systems in a
low Mach number framework that uses a multi-implicit spectral deferred correc-
tions (MISDC) strategy. Generally, spectral deferred correction (SDC) algorithms
are a class of numerical methods that represent the solution as an integral in time
and iteratively solve a series of correction equations designed to reduce both the
integration and splitting error. The correction equations are typically formed us-
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ing a low-order time-integration scheme, but are applied iteratively to construct
schemes of arbitrarily high accuracy. Spectral deferred corrections are introduced
in Dutt et al. [12] for ODEs where the integration of the ODE, as well as the associ-
ated correction equations, is done using forward or backward Euler discretizations.
Minion [24] introduces a semi-implicit version (SISDC) for ODEs with stiff and
non-stiff processes, such as advection-diffusion systems. The correction equations
for the non-stiff terms are discretized explicitly, whereas the stiff term corrections
are treated implicitly. Bourlioux et al. [7] introduce an MISDC approach for PDEs
with ADR processes where advection terms are evaluated explicitly, reaction and
diffusion terms treated implicitly, and different time steps are used for each pro-
cess. Layton and Minion [22] introduce a conservative formulation of the MISDC
approach for one-dimensional reacting compressible gas dynamics. Other successful
applications of SDC include zero-Mach number gas dynamics [17], and the incom-
pressible Navier-Stokes equations [1, 25].

Here ideas from these approaches, particularly from [7, 22], are used to develop a
new MISDC algorithm for iteratively coupling ADR processes in the finite-volume,
Cartesian grid, second-order projection method framework from [11]. The MISDC
algorithm is used to advance the thermodynamic variables in time; thus the time-
advancement algorithm for the velocity and dynamic pressure remain consistent
with the second-order projection methodology. One particular advantage to our
new algorithm is that, similar to Strang splitting, each process is discretized se-
quentially using a numerical method well-suited for its time scale. However, unlike
Strang splitting, when discretizing one process we include the effects of all other
processes as source terms, i.e., our method can be classified as a coupled operator
split approach. In order to reduce error and formally achieve second-order accu-
racy, we use ideas from MISDC to derive a series of correction equations, which
are slightly modified versions of the individual process discretizations, and thus are
straightforward to solve using existing methods.

This paper is organized as follows. In Section 2, we review the low Mach number
equation set used for combustion simulations. In Section 3 we review general SDC
theory, outline our new MISDC coupling strategy, and review the Strang splitting
algorithm from [11]. In Section 4 we describe our new MISDC algorithm and the
original Strang splitting algorithm in full detail. We then comment on the compu-
tational requirements of each algorithm and discuss the extension to nuclear flames
in astrophysical environments. In Section 5 we demonstrate that our algorithm is
able to handle stiff detailed kinetics coupled with nonlinear diffusion as well as
strong nonlinear reactions, all with reduced error and increased computational ef-
ficiency as compared to Strang splitting. Finally, in Section 6, we summarize our
results and discuss future extensions.

2. Low Mach Number Equation Set

In the low Mach number regime, the characteristic fluid velocity is small compared
to the sound speed, and the effect of acoustic wave propagation is unimportant
to the overall dynamics of the system. In a low Mach number numerical method,
acoustic wave propagation is mathematically removed from the equations of mo-
tion, allowing for a time step based on an advective CFL condition,

max
i,d

|Ud|∆t
∆xd

≤ σ; 0 ≤ σ ≤ 1, (1)
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where σ is the advective CFL number, the maximum is taken over all grid cells
and in all directions, ∆xd is the grid spacing, and Ud is the fluid velocity in spatial
direction d. In this paper, we use the low Mach number equation set from Day and
Bell [11], which is based on the model for low Mach number combustion introduced
by Rehm and Baum [28] and rigorously derived from a low Mach number asymp-
totic analysis by Majda and Sethian [23]. The equations are a system of PDEs with
ADR processes constrained by an equation of state in the form of a divergence con-
straint on the velocity, which is derived by differentiating the equation of state in
the Lagrangian frame of the moving fluid. In our equations, the total pressure is
decomposed into a constant ambient pressure and a perturbational pressure, i.e.,
p(x, t) = p0 + π(x, t), such that π/p0 = O(M2). Here, M is the Mach number, a
dimensionless quantity defined as the ratio of the characteristic fluid velocity over
the characteristic sound speed. By constraining the thermodynamics with p0 rather
than p, sound waves are analytically eliminated from our system while retaining
local compressibility effects due to reactions and thermal diffusion. Thus, the time
step is constrained by an advective CFL condition rather than an acoustic CFL
condition, leading to a ∼1/M increase in the allowable time step over an explicit,
fully compressible method.

It is helpful to think of the low Mach number equations as an ADR system for
thermodynamic variables coupled to an equation for a velocity field that is subject
to a divergence constraint. Using the notation in [11], the evolution equations for
the thermodynamic variables are instantiations of conservation of mass and energy:

∂(ρYm)

∂t
= −∇ · (UρYm) +∇ · ρDm∇Ym + ω̇m, (2)

∂(ρh)

∂t
= −∇ · (Uρh) +∇ · λ

cp
∇h+

∑
m

∇ · hm
(
ρDm −

λ

cp

)
∇Ym, (3)

where ρ is the density, Ym is the mass fraction of species m, U is the velocity,
Dm(Ym, T ) are the species mixture-averaged diffusion coefficients, T is the temper-
ature, ω̇m is the production rate for ρYm due to chemical reactions, h =

∑
m Ymhm

is the enthalpy with hm(T ) the enthalpy of species m, λ(Ym, T ) is the thermal
conductivity, and cp(Ym, T ) =

∑
m Ymdhm/dT . Our definition of enthalpy includes

the standard enthalpy of formation, so there is no net change to h due to reactions.
We note that in the case of unity Lewis number (Le=1), ρDm = λ/cp for all m, and
therefore the terms in (3) proportional to ∇Ym are zero. These evolution equations
are supplemented by an equation of state,

p0 = ρRT
∑
m

Ym
Wm

, (4)

where R is the universal gas constant and Wm is the molecular weight of species m.
Neither species diffusion nor reactions redistribute the total mass; hence, we have∑

mDm∇Ym = 0 and
∑

m ω̇m = 0. Summing the species equations and noting that∑
m Ym = 1, we see that (2) implies the continuity equation,

∂ρ

∂t
= −∇ · (Uρ). (5)

As noted in [11], numerical discretizations of Γ̃m ≡ ρDm∇Ym will not in general

satisfy
∑

m Γ̃m = 0. To conserve mass, these fluxes must be modified so that they
sum to zero. We use the “conservation diffusion velocity” approach described in
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[11] to correct Γ̃m, denoting the new result as Γm. In both the Strang splitting and

MISDC algorithms described in this paper, whenever Γ̃m is explicitly evaluated, we
“conservatively correct” the fluxes. Also, whenever Γ̃m is evaluated implicitly (as
is done in the implicit diffusion discretizations for Ym), we first solve the implicit

system, conservatively correct Γ̃m, and then modify the time-advanced values of
Ym to be consistent with the corrected fluxes. These modifications will be noted in
the algorithm descriptions below.

The energy equation (3) can also be expressed in terms of temperature,

ρcp
DT

Dt
= ∇ · λ∇T +

∑
m

ρDm∇Ym · ∇hm −
∑
m

ω̇mhm. (6)

In the Strang splitting algorithm, we will discretize this equation to advance tem-
perature as part of the thermodynamic variable advance.

The evolution equation for velocity is a form of conservation of momentum:

ρ
DU

Dt
= −∇π +∇ · τ, (7)

with stress tensor

τ = µ

[
∇U + (∇U)T − 2

3
I(∇ · U)

]
, (8)

where µ(Ym, T ) is the viscosity and I is the identity tensor.
The low Mach number constraint is represented as a divergence constraint on the

velocity field, derived by differentiating the equation of state along particle paths:

∇ · U = S, (9)

where S is a complex function of the thermodynamic variables, and accounts for
local compressibility effects due to reaction heating, compositional changes, and
thermal diffusion. See equation (7) in [11] for the full form of S.

Since the divergence constraint is a linearization of the equation of state, the
thermodynamic variables ρ, Ym, and h will not remain in thermodynamic equilib-
rium with p0. To address this issue while maintaining conservation, we use the
“volume discrepancy” approach from [5, 11, 27], where we add a correction term
to the divergence constraint that adjusts the velocity field to prevent the solution
from drifting from the equation of state,

∇ · U = Ŝ ≡ S +
f

γpeos

(
peos − p0

∆t
+ U · ∇peos

)
, (10)

where f is a constant satisfying f < 1.0 (f = 0.3 in this paper), γ is the local ratio
of specific heats, and peos = p(ρ, h, Ym) is computed using the equation of state.

3. Algorithmic Overview

In this section, we briefly review versions of the SDC method and give an overview
of our new MISDC time-advancement strategy. We also give an overview of the
original Strang splitting algorithm. Both algorithms will be described in full de-
tail in Section 4. Our objective here is to use the ideas from other SDC-based
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approaches to couple advection, diffusion, and reaction in a low Mach number re-
acting flow model. We will only apply this iterative correction scheme to the time-
advancement of the thermodynamic variables. The underlying projection method-
ology and the time-advancement of the velocity and perturbational pressure will
remain unchanged from [11]. Consequently, unlike much of the previous work on
SDC that focuses on higher-order temporal integration, the goal here is to intro-
duce better coupling between processes. We want to construct an algorithm that
can reuse the algorithmic components of a Strang splitting algorithm, particularly
the use of high-accuracy integration of the chemical kinetics to treat potential
stiffness in detailed chemical mechanisms.

3.1 SDC Overview

SDC methods for ODEs are introduced in Dutt et al. [12]. The basic idea of SDC
is to write the solution of an ODE

φt = F (t, φ(t)), t ∈ [tn, tn+1]; (11)

φ(tn) = φn, (12)

as an integral,

φ(t) = φn +

∫ t

tn
F (φ) dτ, (13)

where we suppress explicit dependence of F and φ on t for notational simplicity.
Given an approximation φ(k)(t) to φ(t), one can then define a residual,

E(t, φ(k)) = φn +

∫ t

tn
F (φ(k)) dτ − φ(k)(t). (14)

Defining the error as δ(k)(t) = φ(t)− φ(k)(t), one can then show that

δ(k)(t) =

∫ t

tn

[
F (φ(k) + δ(k))− F (φ(k))

]
dτ + E(t, φ(k)). (15)

In SDC algorithms, the integral term in E is evaluated with a higher-order quadra-
ture rule. By using a low-order discretization of the integral in (15) one can con-
struct an iterative scheme that improves the overall order of accuracy of the ap-
proximation by one per iteration, up to the order of accuracy of the underlying
quadrature rule used to evaluate the integral term in E. Specifically, if we let φ(k)

represent the current approximation and define φ(k+1) = φ(k) + δ(k) to be the
iterative update, then combining (14) and (15) results in an update equation,

φ(k+1)(t) = φn +

∫ t

tn

[
F (φ(k+1))− F (φ(k))

]
dτ +

∫ t

tn
F (φ(k)) dτ, (16)

where a low-order discretization (e.g., forward or backward Euler) is used for the
first integral and a higher-order quadrature is used to evaluate the second integral.
For our reacting flow model, the underlying projection methodology for the time-
advancement of velocity is second-order, so we require the use of second-order (or
higher) numerical quadrature for the second integral.
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3.2 MISDC Correction Equations

Bourlioux et al. [7] and Layton and Minion [22] introduce a variant of SDC, re-
ferred to as MISDC, in which F is decomposed into distinct processes, each treated
separately and on its own time scale. Here, we write

φt = F ≡ A(φ) +D(φ) +R(φ), (17)

to refer to advection, diffusion, and reaction processes. For this construction we
assume that we are given an approximate solution φ(k) that we want to improve.
The construction of φ(0) to initialize the iterations is discussed in Section 3.3. Using
the ideas in [7, 22], we want to develop a series of correction equations to update
φ(k) that uses relatively simple second-order discretizations of A(φ) and D(φ) but
a high-accuracy treatment of R(φ). In our approach, A(φ(k)) is piecewise-constant
over each time step, and is evaluated using a second-order Godunov procedure.
The Godunov procedure computes a time-centered advection term at tn+1/2, and
incorporates an explicit diffusion source term and an iteratively lagged reaction
source term, i.e.,

A(φ(k)) ≡ An+1/2,(k) = A
(
φn, D(φn), I

(k−1)
R

)
, (18)

where I
(k−1)
R is the effective contribution due to reactions from the previous itera-

tion, i.e.,

I
(k−1)
R =

1

tn+1 − tn

∫ tn+1

tn
R(φ(k−1)) dτ. (19)

The evaluation of I
(k−1)
R is computed from a high-accuracy integration of the reac-

tion kinetics equations augmented with representation of advection and diffusion
using VODE. Details of this procedure are given below. We also represent D(φ(k))
as piecewise-constant over the time step, found by using a midpoint rule,

D(φ(k)) =
1

2

[
D(φn) +D(φn+1,(k))

]
. (20)

In the spirit of MISDC, we will solve correction equations for the individual
processes in (17) sequentially. In our approach, we begin by discretizing (16), but
only including the advection and diffusion terms in the correction integral,

φ
(k+1)
AD (t) = φn+

∫ t

tn

[
A(φ(k+1))−A(φ(k)) +D(φ(k+1))−D(φ(k))

]
dτ+

∫ t

tn
F (φ(k)) dτ.

(21)

Thus, φ
(k+1)
AD (t) represents an updated approximation of the solution after correct-

ing the advection and diffusion terms only. For the first integral, we use an explicit
update for the advection term and a backward Euler discretization for the diffusion
term. For the second integral, we represent F in terms of A, D, and R and use

the definition of A(φ(k)), D(φ(k)), and I
(k−1)
R to obtain a discretization of (21) for
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φ
n+1,(k+1)
AD :

φ
n+1,(k+1)
AD = φn + ∆t

[
An+1/2,(k+1) −An+1/2,(k) +D(φ

n+1,(k+1)
AD )−D(φn+1,(k))

]
+∆t

[
An+1/2,(k) +

1

2

(
D(φn) +D(φn+1,(k))

)
+ I

(k)
R

]
, (22)

where I
(k)
R is defined using (19). This equation simplifies to the following backward

Euler type linear system, with the right-hand-side consisting of known quantities:

(I −∆tD)φ
n+1,(k+1)
AD = φn + ∆t

[
An+1/2,(k+1) +

1

2

(
D(φn)−D(φn+1,(k))

)
+ I

(k)
R

]
.

(23)

After computing φ
n+1,(k+1)
AD , we complete the update by solving a correction equa-

tion for the reaction term. Standard MISDC approaches would formulate the re-
action correction equation as

φ(k+1)(t) = φn +

∫ t

tn

[
An+1/2,(k+1) −An+1/2,(k) +D(φ

n+1,(k+1)
AD )−D(φn+1,(k))

]
dτ

+

∫ t

tn

[
R(φ(k+1))−R(φ(k))

]
dτ +

∫ t

tn
F (φ(k)) dτ, (24)

and use a backward Euler type discretization for the integral of the reaction terms.
Here, to address stiffness issues with detailed chemical kinetics, we will instead
formulate the correction equation for the reaction as an ODE, which will be ap-
proximated using the VODE package. In particular, by differentiating (24) we
obtain

φ
(k+1)
t =

[
An+1/2,(k+1) −An+1/2,(k) +D(φ

n+1,(k+1)
AD )−D(φn+1,(k))

]
+
[
R(φ(k+1))−R(φ(k))

]
+

[
An+1/2,(k) +

1

2

(
D(φn) +D(φn+1,(k))

)
+R(φ(k))

]
= R(φ(k+1)) +An+1/2,(k+1) +D(φ

n+1,(k+1)
AD ) +

1

2

[
D(φn)−D(φn+1,(k))

]
︸ ︷︷ ︸

F
(k+1)
AD

, (25)

which we then integrate with VODE to advance φn over ∆t to obtain φn+1,(k+1).

We note that from the integration, we can easily evaluate I
(k+1)
R that is needed for

the next iteration,

I
(k+1)
R =

φn+1,(k+1) − φn

∆t
− F (k+1)

AD . (26)

3.3 MISDC Predictor

In the MISDC predictor step we need to compute φn+1,(0). The predictor only needs
to supply a reasonable guess at the solution since the subsequent correction equa-
tions will reduce the error to the desired order of accuracy. We choose a predictor
that has similar form to the correction equations. We begin by using a second-order
Godunov procedure to compute a time-centered advection term, using an explicit
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diffusion source term and time-lagged reaction source terms,

A(φ(0)) ≡ An+1/2,(0) = A
(
φn, D(φn), I lagged

R

)
, (27)

where I lagged
R ≡ I

(kmax)
R from the previous time step. We then solve an advection-

diffusion equation using a Crank-Nicolson discretization for diffusion, including the
reaction source term,

φ
n+1,(0)
AD − φn

∆t
= An+1/2,(0) +

1

2

[
D(φn) +D(φ

n+1,(0)
AD )

]
+ I lagged

R . (28)

Finally, we use VODE to discretize the reaction term and advance φn over ∆t to
obtain φn+1,(0) using

φ
(0)
t = R(φ(0)) +An+1/2,(0) +

1

2

[
D(φn) +D(φ

n+1,(0)
AD )

]
︸ ︷︷ ︸

F
(0)
AD

, (29)

and define I
(0)
R for use in the first MISDC corrector iteration as

I
(0)
R =

φn+1,(0) − φn

∆t
− F (0)

AD. (30)

3.4 Overview of Strang Splitting Algorithm

For comparison purposes, we also give an overview of the Strang splitting algorithm
from [11], which is also described in full detail in Section 4. First, we use VODE
to advance the reaction equations by ∆t/2, ignoring contributions from advection
and diffusion. In particular, we define φ〈1〉 by integrating

φt = R(φ) (31)

from tn to tn + ∆t/2 with initial condition, φn. Next, as in the MISDC algorithm,
we use a second-order Godunov procedure to compute the advection term at tn+1/2,
but here we ignore the effect of reactions:

A(φ) ≡ An+1/2 = A
(
φ〈1〉, D(φ〈1〉)

)
. (32)

We use a semi-implicit discretization of diffusion to advance the advection-diffusion
equations by ∆t:

φ〈2〉 − φ〈1〉

∆t
= An+1/2 +

1

2

[
D(φ〈1〉) +D(φ〈2〉)

]
. (33)

The advection-diffusion discretization uses a more elaborate predictor-corrector
approach in order to account for the state-dependent transport coefficients in a
second-order fashion. Finally, we use VODE to advance the reaction equations
by ∆t/2, ignoring contributions from advection and diffusion. We define φn+1 by
integrating

φt = R(φ) (34)
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from tn + ∆t/2 to tn+1 with initial condition, φ〈2〉.

4. Algorithmic Details

In this section we describe the numerical discretization of the low Mach number
model, with particular emphasis on the time-advancement of the thermodynamic
variables. The overall approach is a second-order projection method with an em-
bedded MISDC strategy for advancing the thermodynamic variables. We also de-
scribe the Strang splitting approach used in [11], noting that the Strang splitting
and MISDC algorithms differ only in the time-advancement of the thermodynamic
variables. The spatial discretizations and the treatment of velocity, including the
projection are the same in both algorithms.

We use a finite-volume, Cartesian grid approach with constant grid spacing,
where U , ρ, ρYm, ρh, and T represent cell averages, whereas π is defined as
point-values on nodes at half time levels. In summary, we advance the species (2),
enthalpy (3), and momentum (7) in time subject to constraint (10). There are
three major steps in the algorithm:

Step 1: (Compute advection velocities) Use a second-order Godunov procedure
to predict a time-centered velocity, UADV,∗, on cell faces using the cell-centered
data at tn and the lagged pressure gradient from tn−

1/2. (An iterative procedure is
used to define an initial pressure profile for the algorithm; see [2, 11] for details.)
The provisional field, UADV,∗, represents a normal velocity on cell faces analogous
to a MAC-type staggered grid discretization of the Navier-Stokes equations (see
[15], for example). However, UADV,∗ fails to satisfy the divergence constraint (10).
We apply a discrete projection by solving the elliptic equation

DFC→CC 1

ρn
GCC→FCφ = DFC→CCUADV,∗ −

(
Ŝn +

∆tn

2

Ŝn − Ŝn−1

∆tn−1

)
, (35)

for φ at cell-centers, where DFC→CC represents a cell-centered divergence of face-
centered data, and GCC→FC represents a face-centered gradient of cell-centered
data, and ρn is computed on cell faces using arithmetic averaging from neighboring
cell centers. The solution, φ, is then used to define

UADV = UADV,∗ − 1

ρn
GCC→FCφ, (36)

Thus, UADV is a second-order accurate, staggered grid vector field at tn+1/2 that
discretely satisfies the constraint (10), and is used for computing the time-explicit
advective fluxes for U , ρh, and ρYm (and advective derivatives for T in the Strang
splitting algorithm).

Step 2: (Advance thermodynamic variables) Integrate (ρYm, ρh) over the full
time step. This is where the primary differences between the MISDC and Strang
splitting algorithms arise. Both algorithms are multi-step procedures that will be
described in Section 4.1.

Step 3: (Advance the velocity) Compute Sn+1 from the new-time thermody-
namic variables and an estimate of ω̇n+1

m . For the MISDC algorithm, evaluate ω̇n+1
m

directly from the new-time thermodynamic variables. For the Strang splitting al-
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gorithm, we use the average value of ω̇m from each of the two VODE chemistry
solves during the thermodynamic variable advance (Note that results presented
in Section 5 will suggest why the integral-averaged production rates might be the
more appropriate option for the Strang algorithm.)

Next, we compute an intermediate cell-centered velocity field, Un+1,∗ using the
lagged pressure gradient, by solving

ρn+1/2
Un+1,∗ − Un

∆t
+
(
UADV · ∇U

)n+1/2
=

1

2

(
∇ · τn +∇ · τn+1,∗)−∇πn−1/2, (37)

where τn+1,∗ = µn+1[∇Un+1,∗+(∇Un+1,∗)T−2IŜn+1/3] and ρn+1/2 = (ρn+ρn+1)/2.
This is a semi-implicit discretization for U , requiring a linear solve. The time-
centered velocity in the advective derivative, Un+1/2, is computed in the same way
as UADV,∗, but also includes the viscous stress tensor evaluated at tn as a source
term in the Godunov integrator. At this point, the intermediate velocity field Un+1,∗

does not satisfy the constraint (10). Hence, we apply an approximate projection to
update the pressure and to project Un+1,∗ onto the constraint surface. In particular,
we solve

LN→Nφ = DCC→N

(
Un+1,∗ +

∆t

ρn+1/2
GN→CCπn−

1/2

)
− Ŝn+1 (38)

for nodal values of φ. Here, LN→N represents a nodal Laplacian of nodal data, com-
puted using the standard bilinear finite-element approximation to ∇ · (1/ρn+1/2)∇.
Also, DCC→N is a discrete second-order operator that approximates the divergence
at nodes from cell-centered data and GN→CC approximates a cell-centered gra-
dient from nodal data. We compute nodal values for Ŝn+1 by interpolating the
cell-centered values. Finally, we determine the new-time cell-centered velocity field
using

Un+1 = Un+1,∗ − ∆t

ρn+1/2
GN→CC(φ− πn−1/2), (39)

and the new time-centered pressure using πn+1/2 = φ. This completes the description
of the time-advancement algorithm.

4.1 Thermodynamic Advance

Here we describe the details of Step 2 for both the MISDC and Strang splitting
algorithms, in which we advance (ρYm, ρh) over the full time step.

4.1.1 MISDC Algorithm

The MISDC algorithm uses a MOL integration to advance the PDEs describing
the thermodynamic variables given by species (2) and enthalpy (3). As discussed
in Section 3, we use a first-order in time predictor to compute an estimate of the
time-advanced state, and then iteratively solve correction equations to improve
the accuracy of the solution. There are two steps in the MISDC thermodynamic
advance:

• MISDC Step 2A: (Predictor) Advance (ρYm, ρh)n → (ρYm, ρh)n+1,(0) by dis-
cretizing the full ADR system over the time interval ∆t using a method that is
first-order in time due to the use of time-lagged thermodynamic coefficients in
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the implicit treatment of diffusive terms. In this section, we simplify notation by
suppressing the time step index, e.g., (ρYm, ρh)n+1,(k) ≡ (ρYm, ρh)(k).

• MISDC Step 2B: (Corrector) Iteratively improve the accuracy of (ρYm, ρh)(k),
for k ∈ (1, kmax). The final iteration defines the time-advanced state,
(ρYm, ρh)n+1 = (ρYm, ρh)(kmax).

To formally achieve second-order accuracy, kmax ≥ 1. A larger value of kmax will
reduce the error of the final solution to that of the underlying quadrature scheme
used to integrate (25), but cannot further improve the convergence rate of the
method. Here are the details for MISDC Steps 2A and 2B.

MISDC Algorithm Step Details

MISDC Step 2A-I: Compute (λ, cp,Dm, hm)n from (Ym, T )n. Compute Γ̃nm =
ρnDnm∇Y n

m and conservatively correct these fluxes as discussed in Section 2 to
obtain Γnm. Use a second-order Godunov integrator to compute time-centered edge
states, (ρYm, ρh)n+1/2,(0), with explicitly evaluated diffusion processes and time-

lagged reaction processes (i.e., I lagged
R ) as source terms. Then, compute the time-

advanced density, ρn+1, using a time-explicit discretization of (5),

ρn+1 − ρn

∆t
= −

∑
m

∇ ·
(
UADVρYm

)n+1/2,(0)
. (40)

MISDC Step 2A-II: Compute provisional, time-advanced species mass frac-

tions, Ỹ
(0)
m,AD, using a discretization of (2) with lagged transport coefficients and

time-lagged reaction source terms,

ρn+1Ỹ
(0)
m,AD − (ρYm)n

∆t
= −∇·

(
UADVρYm

)n+1/2,(0)
+

1

2
∇·
(

Γnm + ρnDnm∇Ỹ
(0)
m,AD

)
+I lagged

R,ρYm
.

(41)

Each of the species equations requires a linear solve for Ỹ
(0)
m,AD.

MISDC Step 2A-III: Compute Γ
(0)
m,AD, which are conservatively corrected ver-

sions of Γ̃
(0)
m,AD = ρnDnm∇Ỹ

(0)
m,AD, and compute updated provisional time-advanced

species mass fractions, Y
(0)
m,AD, using

ρn+1Y
(0)
m,AD − (ρYm)n

∆t
= −∇ ·

(
UADVρYm

)n+1/2,(0)
+

1

2
∇ ·
(

Γnm + Γ
(0)
m,AD

)
︸ ︷︷ ︸

Q
(0)
ρYm

+I lagged
R,ρYm

,

(42)

where Q
(0)
ρYm

represents an effective contribution of advection-diffusion to the
update of ρYm.
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MISDC Step 2A-IV: Compute a provisional, time-advanced enthalpy, h
(0)
AD,

using a discretization of (3) with lagged transport coefficients,

ρn+1h
(0)
AD − (ρh)n

∆t
= −∇ ·

(
UADVρh

)n+1/2,(0)

+
1

2

(
∇ · λ

n

cnp
∇hn +∇ · λ

n

cnp
∇h(0)

AD

)
+

1

2

∑
m

∇ ·
[
hnm

(
Γnm −

λn

cnp
∇Y n

m

)
+ hnm

(
Γ

(0)
m,AD −

λn

cnp
∇Y (0)

m,AD

)]
. (43)

Note that the enthalpy diffusion term is semi-implicit, requiring a linear solve for

h
(0)
AD. The species enthalpy terms, hm, are also lagged in order to avoid a more

complicated linear system. Once we have computed h
(0)
AD, we define Q

(0)
ρh as the

evaluation of the right-hand side of (43), which represents an effective contribution
of advection-diffusion to the update of ρh.

MISDC Step 2A-V: Use VODE to integrate species (2) and enthalpy (3) over
∆t to advance (ρYm, ρh)n to (ρYm, ρh)(0) using the piecewise-constant advection
and diffusion source terms:

∂(ρYm)

∂t
= Q

(0)
ρYm

+ ω̇m(Ym, T ), (44)

∂(ρh)

∂t
= Q

(0)
ρh . (45)

Note that each evaluation of the right-hand-side in the VODE solve requires a call
to the equation of state to obtain T from (Ym, h) before computing ω̇m. After the
integration is complete, we make one final call to the equation of state to compute
T (0) from (Ym, h)(0).

MISDC Step 2A-VI: Compute the effect of reactions in the evolution of ρYm
(recall that reactions do not affect ρh) in the VODE integration using

I
(0)
R,ρYm

=
(ρYm)(0) − (ρYm)n

∆t
−Q(0)

ρYm
. (46)

This is the end of the predictor. In MISDC Step 2B, we improve upon the
most recently computed time-advanced solution by solving correction equations.
We are also able to compute more accurate estimates of time-advanced ther-
modynamic coefficients, since we can use the most recently computed solution.
We now describe MISDC Step 2B as if we are performing an arbitrary number
of iterations from k = 0 to kmax − 1. Note that in this paper, kmax = 1 unless
indicated otherwise, since that is sufficient to match the order of the underlying
second-order projection method framework.

MISDC Step 2B-I: As in Step 2A-MISDC-a, use a second-order Godunov
integrator to compute updated time-centered edge states, (ρYm, ρh)n+1/2,(k+1), but

use I
(k)
R rather than I lagged

R as a source term in the Godunov integrator.
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MISDC Step 2B-II: Compute time-advanced transport coefficients,

(λ, cp,Dm, hm)(k) from (Ym, T )(k). Next, compute Γ
(k)
m , which are conservatively

corrected versions of Γ̃
(k)
m = ρn+1D(k)

m ∇Y (k)
m . Then, compute provisional, time-

advanced species mass fractions, Ỹ
(k+1)
m,AD , by solving a backward Euler type correc-

tion equation,

ρn+1Ỹ
(k+1)
m,AD − (ρYm)n

∆t
= −∇ ·

(
UADVρYm

)n+1/2,(k+1)

+∇ · ρn+1D(k)
m ∇Ỹ

(k+1)
m,AD +

1

2
∇ ·
(

Γnm − Γ(k)
m

)
+ I

(k)
R,ρYm

. (47)

Each of the species equations is implicit, requiring a linear solve for Ỹ
(k+1)
m,AD .

MISDC Step 2B-III: Compute Γ
(k+1)
m,AD, which are conservatively corrected ver-

sions of Γ̃
(k+1)
m,AD = ∇·ρn+1D(k)

m ∇Ỹ (k+1)
m,AD . Then, similar to MISDC Step 2A-III, define

an effective contribution of advection-diffusion to the update of ρYm,

Q
(k+1)
ρYm

= −∇ ·
(
UADVρYm

)n+1/2,(k+1)
+ Γ

(k+1)
m,AD +

1

2
∇ ·
(

Γnm − Γ(k)
m

)
. (48)

MISDC Step 2B-IV: Compute a provisional, time-advanced enthalpy, h
(k+1)
AD ,

by solving a backward Euler type correction equation,

ρn+1h
(k+1)
AD − (ρh)n

∆t
= −∇ · (UADVρh)n+1/2,(k+1)

+∇ · λ
(k)

c
(k)
p

∇h(k+1)
AD +

1

2

(
∇ · λ

n

cnp
∇hn −∇ · λ

(k)

c
(k)
p

∇h(k)

)

+
1

2

∑
m

∇ ·

[
hnm

(
Γnm −

λn

cnp
∇Y n

m

)
+ h(k)

m

(
Γ(k)
m −

λ(k)

c
(k)
p

∇Y (k)
m

)]
. (49)

The enthalpy term is implicit, requiring a linear solve for h
(k+1)
AD , whereas the

species enthalpy terms, hm, are discretized with a trapezoidal rule using iteratively
lagged, time-advanced values of hm in order to avoid a more complicated linear

system. Once we have computed h
(k+1)
AD , we define Q

(k+1)
ρh as the evaluation

of the right-hand side of (49), which represents an effective contribution of
advection-diffusion to the update of ρh.

MISDC Step 2B-V: Use VODE to integrate species (2) and enthalpy (3) over
∆t to advance (ρYm, ρh)n to (ρYm, ρh)(k+1) using piecewise-constant advection and
diffusion source terms:

∂(ρYm)

∂t
= Q

(k+1)
ρYm

+ ω̇m(Ym, T ), (50)

∂(ρh)

∂t
= Q

(k+1)
ρh . (51)

After the integration is complete, we make one final call to the equation of state
to compute T (k+1) from (Ym, h)(k+1).
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MISDC Step 2B-VI: Compute the effect of reactions in the evolution of ρYm
in the VODE integration using,

I
(k+1)
R,ρYm

=
(ρYm)(k+1) − (ρYm)n

∆t
−Q(k+1)

ρYm
. (52)

If k < kmax−1, set k = k+1 and return to MISDC Step 2B-I. Otherwise, the time-
advancement of the thermodynamic variables is complete, and set (ρYm, ρh)n+1 =
(ρYm, ρh)(k+1).

4.1.2 Strang Splitting Algorithm

The Strang splitting algorithm is used to advance the PDEs describing the ther-
modynamic variables given by species (2) and enthalpy (3). Unlike the MISDC al-
gorithm, the system is divided arbitrarily into “reaction” and “advection-diffusion”
components, and each is integrated in isolation from the other. The discretization of
the advection-diffusion component uses a predictor-corrector approach to account
for time-advanced transport coefficients in a second-order manner. There are four
steps in the Strang splitting thermodynamic advance:

• Strang Step 2A: (First reaction step) Advance (ρYm, ρh)n → (ρYm, ρh)〈1〉 by
integrating the reaction terms over the time interval ∆t/2 using VODE.

• Strang Step 2B: (Advection-diffusion predictor) Advance (ρYm, ρh)〈1〉 →
(ρYm, ρh)

〈2〉
pred by discretizing the advection-diffusion terms over the time interval

∆t using time-lagged transport coefficients.

• Strang Step 2C: (Advection-diffusion corrector) Advance (ρYm, ρh)〈1〉 →
(ρYm, ρh)〈2〉 by discretizing the advection-diffusion terms over the time inter-
val ∆t using time-advanced transport coefficients computed from the solution of
the predictor.

• Strang Step 2D: (Second reaction step) Advance (ρYm, ρh)〈2〉 → (ρYm, ρh)n+1

by integrating the reaction terms over the time interval ∆t/2 using VODE.

We now give details for Strang Steps 2A–2D.

Strang Algorithm Step Details

Strang Step 2A: Use VODE to integrate species (2) and temperature (6) over
∆t/2 to advance (Ym, T )n to (Ym, T )〈1〉 while ignoring contributions due to advec-
tion and diffusion:

∂Ym
∂t

=
1

ρ
ω̇m(Ym, T ), (53)

∂T

∂t
= − 1

ρcp

∑
m

hmω̇m(Ym, T ). (54)

Strang Step 2B-I: Compute (λ, cp,Dm, hm)〈1〉 from (Ym, T )〈1〉. Compute Γ̃
〈1〉
m =

ρ〈1〉D〈1〉m ∇Y 〈1〉m and conservatively correct these fluxes to obtain Γ
〈1〉
m . Use a second-

order Godunov integrator to compute time-centered edge states, (ρYm, ρh, T )n+1/2

including the explicitly evaluated diffusion processes as source terms.
Strang Step 2B-II: Compute the time-advanced density, ρ〈2〉, using a time-

explicit discretization of (5),

ρ〈2〉 − ρ〈1〉

∆t
= −

∑
m

∇ ·
(
UADVρYm

)n+1/2
. (55)
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Strang Step 2B-III: Compute a provisional time-advanced temperature, T̃
〈2〉
pred

using a Crank-Nicolson discretization of (6) with lagged transport coefficients and
without reaction terms,

(
ρ〈1〉 + ρ〈2〉

2

)
c〈1〉p

 T̃ 〈2〉pred − T
〈1〉

∆t
+
(
UADV · ∇T

)n+1/2

 =

1

2

(
∇λ〈1〉∇T 〈1〉 +∇λ〈1〉∇T̃ 〈2〉pred

)
+
∑
m

Γ〈1〉m · ∇h〈1〉m . (56)

Note that this step involves a linear solve for T̃
〈2〉
pred.

Strang Step 2B-IV: Compute D〈2〉m,pred from (Y
〈1〉
m , T̃

〈2〉
pred), and then compute

provisional time-advanced species mass fractions, Ỹ
〈2〉
m,pred, using a Crank-Nicolson

discretization of (2) without reaction terms,

ρ〈2〉Ỹ
〈2〉
m,pred − (ρYm)〈1〉

∆t
= −∇·

(
UADVρYm

)n+1/2
+

1

2
∇·
(
ρ〈2〉D〈2〉m,pred∇Ỹ

〈2〉
m,pred + Γ〈1〉m

)
.

(57)

Each of the species equations requires a linear solve for Ỹ
〈2〉
m,pred.

Strang Step 2B-V: Compute Γ
〈2〉
m,pred, which are conservatively corrected ver-

sions of Γ̃
〈2〉
m,pred = ρ〈2〉D〈2〉m,pred∇Ỹ

〈2〉
m,pred, and compute updated provisional time-

advanced species mass fractions, Y
〈2〉
m,pred,

ρ〈2〉Y
〈2〉
m,pred − (ρYm)〈1〉

∆t
= −∇ ·

(
UADVρYm

)n+1/2 − 1

2
∇ ·
(

Γ
〈2〉
m,pred + Γ〈1〉m

)
. (58)

Strang Step 2B-VI: Compute (λ, cp, hm)
〈2〉
pred from (T̃ , Ym)

〈2〉
pred, and then com-

pute a provisional time-advanced enthalpy, h
〈2〉
pred, using a Crank-Nicolson type dis-

cretization of (3),

ρ〈2〉h
〈2〉
pred − (ρh)〈1〉

∆t
= −∇ ·

(
UADVρh

)n+1/2

+
1

2

∇ · λ〈2〉pred

c
〈2〉
p,pred

∇h〈2〉pred +∇ · λ
〈1〉

c
〈1〉
p

∇h〈1〉


+
1

2

∑
m

∇ ·

h〈2〉m,pred

Γ
〈2〉
m,pred −

λ
〈2〉
pred

c
〈2〉
p,pred

∇Y 〈2〉m,pred

+ h〈1〉m

(
Γ〈1〉m −

λ〈1〉

c
〈1〉
p

∇Y 〈1〉m

) .
(59)

This requires a linear solve for h
〈2〉
pred. In order to avoid a more complicated linear

system, the enthalpy terms multiplying the species fluxes, h
〈2〉
m,pred, are not treated

semi-implicitly, but rather are discretized using a trapezoidal rule with provisional
time-advanced variables.
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Strang Step 2B-VII: To complete the advection-diffusion predictor, compute

T
〈2〉
pred from (Ym, h)

〈2〉
pred by inverting h =

∑
m Ymhm(T ) using Newton iterations.

Strang Step 2C-I: In the corrector, begin by computing new-time fluid proper-

ties, (λ, cp,Dm, hm)〈2〉 from (Ym, h, T )
〈2〉
pred. Next, compute revised provisional time-

advanced species mass fractions, Ỹ
〈2〉
m , using the same Crank-Nicolson discretization

as above, but with updated values of Dm,

ρ〈2〉Ỹ
〈2〉
m − (ρYm)〈1〉

∆t
= −∇ ·

(
UADVρYm

)n+1/2
+

1

2
∇·
(
ρ〈2〉D〈2〉m ∇Ỹ 〈2〉m + Γ〈1〉m

)
. (60)

Strang Step 2C-II: Compute Γ
〈2〉
m , which are conservatively corrected versions

of Γ̃
〈2〉
m = ρ〈2〉D〈2〉m ∇Ỹ 〈2〉m . Then, compute time-advanced species mass fractions,

Y
〈2〉
m , using

(ρYm)〈2〉 − (ρYm)〈1〉

∆t
= −∇ ·

(
UADVρYm

)n+1/2
+

1

2
∇ ·
(

Γ〈2〉m + Γ〈1〉m

)
. (61)

Strang Step 2C-III: Compute a final time-advanced enthalpy, h〈2〉, using a
Crank-Nicolson like update,

(ρh)〈2〉 − (ρh)〈1〉

∆t
= −∇ ·

(
UADVρh

)n+1/2
+

1

2

(
∇ · λ

〈2〉

c
〈2〉
p

∇h〈2〉 +∇ · λ
〈1〉

c
〈1〉
p

∇h〈1〉
)

+
1

2

∑
m

∇ ·

[
h〈2〉m

(
Γ〈2〉m −

λ〈2〉

c
〈2〉
p

∇Y 〈2〉m

)
+ h〈1〉m

(
Γ〈1〉m −

λ〈1〉

c
〈1〉
p

∇Y 〈1〉m

)]
. (62)

Strang Step 2C-IV: Once again, invert the definition of mixture enthalpy to

obtain a consistent final time-advanced temperature, T 〈2〉 = T 〈2〉(h〈2〉, Y
〈2〉
m ). This

is the end of the advection-diffusion step.

Strang Step 2D: Similar to Strang Step 2A, use VODE to integrate species
(2) and temperature (6) over ∆t/2 to advance (Ym, T )〈2〉 to (Ym, T )n+1 while ig-
noring contributions due to advection and diffusion. The time-advancement of the
thermodynamic variables is now complete.

4.2 Extension to Nuclear Flames

In Bell et al. [6], the Strang splitting algorithm from [11] is generalized to the nu-
clear deflagration regime to study astrophysical flames. In such applications, the
reaction rates can be highly nonlinear functions of temperature (the rate of the
C/Mg conversion in white dwarfs scales with ∼ T 23) and a non-ideal equation of
state is required. Even though the reaction networks for these types of applica-
tions are quite simple relative to the terrestrial combustion case, a MISDC-type
discretization can be an extremely effective alternative to Strang splitting, as we
will demonstrate in Section 5.

The governing equations for the astrophysical flow examples are presented in
detail in in [6], along with the necessary modifications to the Strang splitting al-
gorithm of [11]. In summary, these flows are subject to a governing model quite
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similar to that discussed in Section 2. The effects of viscosity and species diffusion
are negligible, so they are omitted entirely. The thermal conductivity and equation
of state are specified via a database of tabular relationships, but the remaining
computational machinery, including linear solvers, Godunov advection integrator,
and ODE evolution schemes, are used in precisely the same way as in the origi-
nal low Mach number combustion algorithm. Thus, the few modifications to the
algorithm presented in Section 4.1 are straightforward.

4.3 Computational Requirements

Before we assess the computational advantages of the MISDC algorithm over the
Strang splitting scheme, it is useful to review their salient similarities and differ-
ences. Both use a similar formulation for the advection term. Likewise, the linear
systems associated with the discretization of the diffusion processes differ only in
the right-hand-side forcing terms. The Strang splitting algorithm requires an ad-
ditional linear solve for temperature, but in the limit of a large number of species,
the work done in linear solves is comparable between the two algorithms. Thus,
the primary difference between algorithms is in the work required to integrate the
reaction terms. We will show that the advection-diffusion source terms present in
the MISDC algorithm leads to ODE systems for the reaction terms that can be in-
tegrated to comparable error with far less computational effort. Thus, the MISDC
algorithm will be shown to be far more efficient than Strang splitting.

5. Results

In this section, we compare the performance of MISDC and Strang splitting for
four problems. The first is a one-dimensional premixed terrestrial methane flame.
The second is a one-dimensional premixed terrestrial hydrogen flame. The third
is a two-dimensional premixed, perturbed hydrogen flame. The fourth is a one-
dimensional astrophysical nuclear carbon flame in a white dwarf environment.

In the first two examples, we examine the error and convergence of MISDC
and Strang splitting by performing one-dimensional simulations to a fixed time at
various resolutions, decreasing ∆x by a factor of two while holding the advective
CFL number, σ, constant. Here we estimate the error by comparing the solution
at resolution ∆x with the solution computed with resolution ∆x/2 Specifically, we
approximate the L1 error for a simulation with ncell cells as

L1
ncell

=
1

ncell

ncell∑
i=1

|φi − φc−f
i |, (63)

where φc−f is a coarsened version of the solution with twice the resolution, which
is obtained using arithmetic averaging onto a grid with ncell cells. We define the
convergence rate between two solutions at adjacent resolutions as

rncell,c/ncell,f = log2

(
L1
ncell,c

L1
ncell,f

)
. (64)

In the third example, we evolve a two-dimensional premixed, perturbed hydrogen
flame and examine how each algorithm captures the dynamics of the resulting
cellular burning structures. In the fourth example, we examine the efficiency and
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accuracy of each algorithm for computing the formation and propagation of a one-
dimensional nuclear carbon flame in a white dwarf environment.

5.1 Methane Flame

In this example we compare the performance of MISDC and Strang splitting
for propagating a one-dimensional premixed methane flame. The simulations are
based on the GRIMech-3.0 [13] model and associated database, as given in the
CHEMKIN-III library [19] format. The GRIMech-3.0 model consists of 53 species
with a 325-step chemical reaction network for premixed methane combustion, cou-
pled with a parametrized model for transport and thermodynamic relationships.
Several levels of detail are supported in GRIMech-3.0 for the diffusive transport
model; we select the mixture-averaged model for differential diffusion, which is
consistent with the formulation presented earlier, and requires the conservation
diffusion velocity modification discussed above to preserve mass conservation. This
example is particularly challenging and a relevant test case because of the extremely
broad range of chemical time scales, which range from 10−4 to 10−10 s.

For this example, an unstrained planar flame propagates into a homogeneous
methane-air mixture at a constant speed. Under these conditions the thermal and
species profiles are steady in a frame co-moving with the flame propagation. In
the reference frame of the unburned fuel the solution translates toward the inlet
at the unstrained laminar burning speed, sL. We select a lean fuel composition,
Y (O2 : CH4 : N2) = (0.2238 : 0.0392 : 0.7370) at T = 298 K, where sL = 18.957
cm s−1, and work in the frame of the unburned fuel.

Initial flame profiles are generated for this study in an auxiliary step using a
steady one-dimensional solution computed with the GRIMech-3.0 model using the
PREMIX code [18]. PREMIX incorporates nonuniform grid spacing in 1D in order
to focus mesh resolution near regions of high curvature in the flame profiles. A
numerically resolved steady PREMIX solution is translated into the frame of the
unburned fuel, and interpolated onto fixed uniform grids using ncell = 256, 512,
1024, and 2048 cells across the 1.2 cm domain. The boundary conditions upstream
of the flame are given by the inlet gas composition and temperature and an outflow
condition is specified at the downstream boundary. The pressure within the domain
is fixed at 1 atm.

The profiles are evolved with both the MISDC and Strang algorithms for 1 ms
to allow the initial data to relax on the coarse grid, and for the flame to propa-
gate a nontrivial distance through the mesh. The time step for the four cases are
∆t = 12.5, 6.25, 3.125, and 1.5625 µs, respectively, corresponding to σ ∼ 0.25. The
resulting profiles are averaged and compared to a reference solution as discussed
above in order to evaluate the error and convergence properties of the integration
schemes.

In the top and middle of Table 1, we report measured error norms and conver-
gence rates using both schemes for ρ, T , ρh, U , the mass fractions of the primary
reactants (O2 and CH4), the primary products (H2O and CO2), and two trace
species with relatively short time scale chemical dynamics (CH2OH and CH2H5).
For ncell = 512 and 1024, the MISDC algorithm exhibits convergence rates between
1.81 and 1.92 in every variable. The Strang splitting algorithm shows more erratic
convergence properties, with rates between 0.50 and 2.92 in each variable. We note
that for ncell = 1024, MISDC is more accurate than Strang splitting in every field,
with an error reduction factor between 2.6 and 11.4 depending on the variable.
However, to make a more meaningful comparison we will compute error and con-
vergence rates for the Strang splitting example with a smaller value of σ, so that
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Table 1. Error and convergence rates for a premixed methane flame using MISDC with σ ∼ 0.25 (top), Strang

splitting with σ ∼ 0.25 (middle), and Strang splitting with σ ∼ 0.1 (bottom).

Variable L1
256 r256/512 L1

512 r512/1024 L1
1024

Y (O2) 9.78E-06 1.97 2.49E-06 1.86 6.86E-07
Y (CH4) 2.65E-06 1.99 6.66E-07 1.88 1.81E-07
Y (N2) 8.00E-07 1.95 2.07E-07 1.87 5.65E-08
Y (H2O) 5.53E-06 1.96 1.42E-06 1.81 4.06E-07
Y (CO2) 7.01E-06 1.96 1.81E-06 1.86 4.99E-07
Y (CH2OH) 2.14E-10 1.99 5.39E-11 1.92 1.43E-11
Y (CH2H5) 3.04E-09 2.00 7.60E-10 1.92 2.00E-10
ρ 3.65E-08 2.05 8.83E-09 1.88 2.39E-09
T 8.85E-02 1.97 2.26E-02 1.88 6.17E-03
ρh 8.94E+01 2.04 2.18E+01 1.87 5.98E+00
U 1.02E-01 2.03 2.50E-02 1.83 7.02E-03
Y (O2) 6.29E-05 2.43 1.17E-05 2.11 2.69E-06
Y (CH4) 1.64E-05 2.29 3.34E-06 2.24 7.07E-07
Y (N2) 3.79E-06 1.80 1.09E-06 1.58 3.66E-07
Y (H2O) 3.71E-05 2.35 7.25E-06 2.55 1.24E-06
Y (CO2) 4.09E-05 2.62 6.65E-06 1.48 2.38E-06
Y (CH2OH) 1.70E-09 1.70 5.25E-10 1.69 1.63E-10
Y (CH2H5) 9.67E-09 1.63 3.13E-09 0.50 2.21E-09
ρ 2.05E-07 2.38 3.95E-08 2.61 6.47E-09
T 5.58E-01 2.46 1.01E-01 2.05 2.44E-02
ρh 5.01E+02 2.02 1.23E+02 1.60 4.08E+01
U 7.19E-01 2.39 1.37E-01 2.92 1.81E-02
Y (O2) 1.62E-05 2.04 3.93E-06 1.94 1.02E-06
Y (CH4) 4.50E-06 2.11 1.04E-06 1.99 2.63E-07
Y (N2) 1.26E-06 1.71 3.87E-07 1.84 1.08E-07
Y (H2O) 9.06E-06 2.21 1.96E-06 2.01 4.84E-07
Y (CO2) 1.09E-05 1.79 3.14E-06 1.85 8.69E-07
Y (CH2OH) 4.96E-10 1.74 1.49E-10 1.61 4.85E-11
Y (CH2H5) 6.01E-09 1.43 2.23E-09 1.65 7.12E-10
ρ 5.41E-08 2.25 1.13E-08 2.04 2.76E-09
T 1.42E-01 2.02 3.51E-02 1.94 9.12E-03
ρh 1.37E+02 2.12 3.15E+01 1.99 7.94E+00
U 1.85E-01 2.42 3.46E-02 2.10 8.05E-03

the method exhibits more uniform convergence (we still use the same values of ncell

and compute to the same final time). We report the error norms and convergence
rates for Strang splitting with σ ∼ 0.1 at the bottom of Table 1. For ncell = 1024,
the error for MISDC with σ ∼ 0.25 is lower than the error for Strang splitting
with σ ∼ 0.1 in every variable, with an error reduction factor between 1.1 and
3.6, depending on the variable. Thus, the MISDC algorithm is able to compute a
solution with less error using a larger value of σ.

5.1.1 Computational Effort

Since both the MISDC and Strang splitting algorithms use the same chemical
ODE integrator with the same error tolerances, we can compare the overall effort
required to complete a time step for each of the two approaches by simply counting
the number of times the right-hand-side for the ODE systems are evaluated over
the same time interval. Note that since we employ a “numerical Jacobian” option,
this count includes the evaluations necessary to form the linearized matrix for the
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nonlinear systems solved by the integrator.
Taking the ncell = 256, σ ∼ 0.25 simulations with both MISDC and Strang

splitting, we evolve the initial data for 5 time steps to allow for transient behavior
from the PREMIX solution to relax. Then, for the next time step, over all 256 zones,
we count the total number of right-hand-side evaluations over all reaction solves.
The Strang splitting algorithm requires 48,522 compared to 9,798 for MISDC,
which is approximately a factor of 5 reduction. In the cell that requires the most
right-hand-side evaluations by Strang splitting, corresponding to a location near
the middle of the flame, the Strang splitting algorithm requires 754 evaluations
compared to 188 for MISDC, which is approximately a factor of 4 reduction.

In order to help visualize why the Strang splitting method requires more right-
hand-side evaluations, we present the time evolution of several species in the
aforementioned cell near the middle of the flame. Figures 1–3 illustrate how
Y (O2), Y (CH2OH), and Y (C2H5) evolve over two time steps. We choose O2 to
illustrate the evolution of the species with the largest destruction rate and CH2OH
and C2H5 to illustrate two species with relatively short time scale chemical dynam-
ics. The trajectories of the solution over the first Strang splitting half time step
of reaction (Strang Step 2A) are represented by the red dots; the second half step
(Strang Step 2D) are represented by the green dots. The discontinuity between
the red and green trajectories represents the change in solution value due to the
advection-diffusion update in Strang Steps 2B and 2C. The corresponding trajec-
tories of the solution in the MISDC predictor (MISDC Step 2A-V) are represented
by the blue dots, and for the correction (Strang Step 2B-V) by the pink dots. Each
dot indicates the solution value at a point in time where the right-hand-side was
evaluated. Thus, the locations where the dots are more densely packed indicates
time ranges where the chemistry integrator performed more computational work.
Focusing on Figures 2 and 3, we see that the change in solution due to the Strang
splitting advection-diffusion step causes steep transients in the solution trajectory,
resulting in very small time steps internal to VODE to properly resolve this be-
havior.

Recall that in the formulation of the Strang splitting algorithm, the reactions
are evolved in the absence of all processes that transport mass and energy across
the boundary of each cell. Thus, over the time step, the total mass density, ρ and
mixture enthalpy, h remain constant even though the temperature of the cell may
increase due to reactions. Since the coupled model does not support acoustic sig-
nals, this accumulated energy must be transported away by the advection-diffusion
component of the algorithm over the time step. The numerical transients exhibited
by the Strang splitting scheme reflect the relaxation of this imbalance. Since the
MISDC scheme incorporates the advection-diffusion directly, there is no such accu-
mulation and no resulting short time scale transients. The MISDC solutions more
accurately reflect the dynamic interplay between the physical processes at play.

On a related note, these observations help to justify why the Strang splitting
scheme uses an integral-averaged approximation for the chemical sources in the
divergence constraint evaluation, as discussed in Section 4. For a converged solu-
tion, the sum of the two reaction components from the Strang splitting algorithm
must equal the corresponding term in the MISDC algorithm. However, Figures
1–3 suggest strongly that integral-averaged production measures are required in
order to provide a sufficiently robust estimate of the effect of the reactions on the
divergence constraint over the time step.

Overall, from this example we conclude that

• Using σ ∼ 0.25, MISDC provides reduced error compared to Strang splitting.

• MISDC exhibits more uniform second-order convergence than Strang splitting



December 8, 2011 12:54 Combustion Theory and Modelling paper

22 Nonaka et al.

9.3

9.6

9.9

 0 ∆t/2 ∆t 3∆t/2 2∆t

Y
(O

2)
 x

 1
0-2

Time

Strang Step 2A
Strang Step 2D

MISDC Step 2A-V
MISDC Step 2B-V

Figure 1. Evolution of Y (O2) over two time steps step for the Strang splitting and MISDC algorithms.
Each dot represents a point in time where VODE evaluated the right-hand-side. The red and green trajecto-
ries represent the two separate calls to VODE required by the Strang splitting algorithm. The discontinuity
between the red and green trajectories represents the contribution due to advection and diffusion in Strang
Steps 2B and 2C. The blue and pink trajectories represent the predictor and corrector calls to advance the
thermodynamic variables in the MISDC algorithm.

at a given σ.

• MISDC with σ ∼ 0.25 provides reduced error compared to Strang splitting with
σ ∼ 0.1.

• MISDC requires less computational work per time step, as indicated by the
number of right-hand-side evaluations in the chemistry solves.

5.2 Hydrogen Flame

We next compare the performance of the MISDC algorithm to Strang splitting
using a one-dimensional premixed hydrogen flame. Although quite similar to the
configuration of the first example, the hydrogen system is distinguished by the
role that differential diffusion plays in the flame propagation. Hydrogen atoms
created in the primary reaction zone preferentially diffuse upstream and attack
the H2 atoms in the cold region just ahead of the flame. In the steady flame, the
H and H2 profiles are considerably more broad than other flame radicals, such as
HO2 and H2O2. Capturing the detailed dynamics of the flame requires an accurate
representation of these differential diffusion effects.

The physical model for the premixed hydrogen system, consisting of 9 species
and 27 reactions, and associated thermodynamic and transport databases were
generated for this case by stripping the carbon species and chemistry from the
GRIMech-3.0 distribution. Similar to the methane flame, the initial conditions
are obtained by interpolating from a frame-shifted, refined steady 827-point, one-
dimensional solution computed using the PREMIX code. For this case, the inlet
stream at T=298 K has composition, Y (H2 : O2 : N2) = (0.0107 : 0.2304 : 0.7589)
so that the unstrained laminar burning speed is sL = 14.869 cm s−1. The initial
profile is interpolated onto a 1.2 cm domain with ncell = 256, 512, 1024, and 2048,
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Figure 2. Same as Figure 1, but for the evolution of Y (CH2OH).

 0

3.0

6.0

9.0

 0 ∆t/2 ∆t 3∆t/2 2∆t

Y
(C

2H
5)

 x
 1

0-6

Time

Strang Step 2A
Strang Step 2D

MISDC Step 2A-V
MISDC Step 2B-V

Figure 3. Same as Figure 1, but for the evolution of Y (C2H5).

and evolved for 2 ms to allow the initial data to relax on the coarse grid, and for
the flame to propagate a nontrivial distance through the mesh. The time step used
in each case is ∆t = 25, 12.5, 6.25, and 3.125 µs, respectively, corresponding to σ ∼
0.25.

In the top and middle of Table 2, we report error and convergence results for both
schemes for ρ, T , ρh, U , the mass fractions of the primary reactants (H2 and O2),
the primary product (H2O), and two trace species with relatively short time scale
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Table 2. Error and convergence rates for a premixed hydrogen flame using MISDC with σ ∼ 0.25 (top), Strang

splitting with σ ∼ 0.25 (middle), and Strang splitting with σ ∼ 0.05 (bottom).

Variable L1
256 r256/512 L1

512 r512/1024 L1
1024

Y (H2) 2.48E-07 1.90 6.64E-08 1.79 1.91E-08
Y (O2) 8.07E-06 1.90 2.16E-06 1.81 6.18E-07
Y (N2) 1.04E-06 1.92 2.73E-07 1.77 7.99E-08
Y (H2O) 7.98E-06 1.90 2.14E-06 1.81 6.11E-07
Y (H2O2) 5.73E-08 2.13 1.31E-08 2.19 2.88E-09
Y (HO2) 4.62E-08 2.09 1.08E-08 2.29 2.22E-09
ρ 3.64E-08 1.95 9.40E-09 1.85 2.60E-09
T 8.13E-02 1.88 2.20E-02 1.79 6.38E-03
ρh 8.13E-02 1.88 2.20E-02 1.79 6.38E-03
U 2.06E-02 1.73 6.22E-03 1.65 1.99E-03
Y (H2) 1.01E-06 1.58 3.38E-07 0.59 2.25E-07
Y (O2) 2.62E-05 1.87 7.16E-06 0.99 3.60E-06
Y (N2) 3.18E-06 1.36 1.24E-06 0.88 6.73E-07
Y (H2O) 2.43E-05 1.81 6.92E-06 1.08 3.27E-06
Y (H2O2) 5.33E-07 0.91 2.83E-07 1.26 1.18E-07
Y (HO2) 3.60E-07 0.51 2.52E-07 1.13 1.15E-07
ρ 1.45E-07 2.07 3.47E-08 1.62 1.13E-08
T 2.97E-01 1.69 9.18E-02 1.13 4.19E-02
ρh 2.97E-01 1.69 9.18E-02 1.13 4.19E-02
U 1.04E-01 3.57 8.72E-03 0.53 6.04E-03
Y (H2) 2.99E-07 1.95 7.74E-08 1.98 1.96E-08
Y (O2) 9.10E-06 2.00 2.27E-06 2.01 5.66E-07
Y (N2) 1.27E-06 1.97 3.25E-07 1.99 8.17E-08
Y (H2O) 8.93E-06 2.00 2.24E-06 2.00 5.59E-07
Y (H2O2) 1.09E-07 1.79 3.13E-08 1.94 8.18E-09
Y (HO2) 9.95E-08 1.59 3.31E-08 1.85 9.17E-09
ρ 3.96E-08 2.01 9.80E-09 2.01 2.44E-09
T 9.81E-02 1.98 2.48E-02 2.00 6.22E-03
ρh 9.81E-02 1.98 2.48E-02 2.00 6.22E-03
U 1.67E-02 2.26 3.48E-03 2.06 8.36E-04

chemical dynamics (H2O2 and HO2). MISDC exhibits more uniform convergence
whereas Strang splitting deviates significantly from second-order (particularly for
U). Furthermore, in the ncell = 1024 simulation, the MISDC algorithm is again
more accurate than the Strang splitting algorithm in every field, with an error
reduction factor between 3 and 53, depending on the variable. Next, we test the
Strang splitting algorithm using σ ∼ 0.05 and report the error norms and con-
vergence rates in the bottom of Table 2. Comparing MISDC using σ ∼ 0.25 with
Strang splitting using σ ∼ 0.05, we see that the error is comparable. Strang split-
ting performs better by a factor of up to 2.4 in some variables, whereas MISDC
performs better by up to a factor of 4.1 in other variables.

In terms of per-step performance, using the same test described in the methane
flame example, the MISDC algorithm required 6,414 right-hand-side evaluations
per time step for the case with ncell = 256, whereas the Strang splitting algorithm
required 28,383, a factor of 4.4 more. Similar to the previous example, we conclude
that the MISDC algorithm is considerably more accurate and efficient than the
Strang splitting scheme.
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Figure 4. Time evolution of d[ρY (H2)]/dt (blue) 0 to (red) -0.013 g cm−3 s−1 at t = 0, 4.8, 8.0, and
12.7 ms using the MISDC algorithm.

5.3 Two-Dimensional Hydrogen Flame

In this example we evolve a two-dimensional lean premixed, perturbed hydrogen
flame to examine the performance of each algorithm within the cellular burning
structures characteristic of thermodiffusively unstable flames. In such regions, it is
critical to correctly capture the stiff coupling of the chemistry with the differential
diffusion. We use the chemistry mechanism and initial profile from the previous
example, but here we use a domain with dimensions Lx = Ly = 1.2 cm, ncell = 256
in each direction, and periodic boundary conditions on the domain boundaries
in the x-direction. We use the same inflow condition at the low-y boundary, and
outflow at the high-y boundary. Each column of cells is initialized with the same
one-dimensional profile as the previous example, except that we shift the location
of the initial profile using a series of Fourier modes,

yshift(x) = 0.016

5∑
i=1

{
Ai sin

[
2πBi(x− Ci)

Lx

]}
, (65)

with A = [1, 1.023, 0.945, 1.017, 0.982], B = [4, 2, 3, 5, 5], and C =
[0, 0.4598, 0.712435, 0.33, 1.4234] cm. The time evolution of d[ρY (H2)]/dt using the
MISDC algorithm is shown in Figure 4. To compare the performance of MISDC
and Strang splitting, we restart each simulation using the data in the last frame in
Figure 4 and track the solution trajectories within the chemical integration steps
over two time steps in the center of the strongest cellular burning region, indi-
cated by the darkest red region in the last panel. Figures 5–7 illustrate how Y (H2),
Y (H2), and Y (H2O2) evolve over the next two time steps, and are analogous to
the solution trajectory figures from the methane flame example. Similar to the
methane flame example, we illustrate the evolution of a species with a relatively
large destruction rate (H2), as well as two species with relatively short time scale
dynamics (H2O2 and HO2). In this particular cell, MISDC requires 45 right-hand-
side evaluations, whereas Strang splitting requires 110 evaluations. We reach the
same conclusions as in the methane flame example, in that the advection-diffusion
forcing terms in the MISDC chemistry integrations lead to a smoother trajectory
which requires fewer right-hand-side evaluations than Strang splitting.

5.4 Nuclear Carbon Flame

Here we examine the performance of both algorithms in the astrophysical regime
with extremely temperature-sensitive reactions (scaling with ∼ T 23) and a non-
ideal equation of state. The physical problem is the development and propagation
of a one-dimensional nuclear carbon flame in a white dwarf environment. We use
the public version of the general stellar equation of state described in [32], which
includes contributions from electrons, ions, and radiation. We calculate thermal
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Figure 5. Same as Figure 1, but for Y (H2) in the two-dimensional hydrogen flame example.
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Figure 6. Same as Figure 5, but for Y (H2O2).

conductivity using Timmes’ publicly available routine, which includes contribu-
tions from radiation and electron conduction processes as explained in [31]. Our
simulation contains 3 species (12C, 16O, and 24Mg) and we model a C/Mg reaction
using a single-step mechanism derived from [10]. We initialize our domain with a
fuel mixture that smoothly transitions to an ash mixture. After ∼ 2.25 × 10−4 s,
a flame front develops and begins propagating across the domain at a constant
velocity. We examine the computed flame speed of each algorithm as a function of
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σ, and will show that the MISDC algorithm computes a much more accurate flame
speed compared to Strang splitting at a given advective CFL number.

Our problem domain is 20 cm with ncell = 2048. We initialize our domain by first
defining a fuel state with ρfuel = 5 × 107 g cm −3, Tfuel = 108 K, Y (C)fuel = 0.5,
Y (O)fuel = 0.5, and Y (Mg)fuel = 0. The ambient pressure is computed from the
fuel state using the equation of state, i.e., p0 = p(ρfuel, Tfuel, Yfuel). We define an ash
state with Tash = 3×109 K, Y (C)ash = 0, Y (O)ash = Y (O)fuel, and Y (Mg)ash = 0.5.
We smoothly vary the temperature and composition across the domain, such that
the initial state is given by:

T (x) = Tfuel +
1

2
(Tash − Tfuel){1 + tanh[2(x− 2.5)]}, (66)

Y (C)(x) = Y (C)fuel +
1

2
[Y (C)ash − Y (C)fuel] {1 + tanh[2(x− 2.5)]}, (67)

Y (Mg)(x) = 1− Y (O)(x)− Y (C)(x). (68)

The equation of state is used to initialize ρ, h = ρ, h(p0, T, Ym) in each cell and
we initialize the velocity to U = 5 × 104 cm s−1 everywhere. We use an inflow
condition at the lower boundary with the initial fuel conditions. We use outflow at
the upper boundary.

We run the simulation with each algorithm to t = 2.5 × 10−4 s using σ =
0.5, 0.25, 0.1, 0.05, and 0.01. Unlike the terrestrial flame examples, we do not fix the
time step, but allow the time step to change over the course of the simulation based
on the advective CFL condition. For reference, the total number of time steps in the
σ = 0.5 simulation is ∼ 3000, and the number of time steps is inversely proportional
to σ, as expected. We also run the same simulations with the MISDC algorithm and
kmax = 3 instead of kmax = 1. We will refer to the MISDC simulations as MISDC-3
and MISDC-1. Note that the MISDC-3 simulation requires approximately twice
the amount of computational work in the thermodynamic advance as the MISDC-
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Figure 8. Flame speed as a function of advective CFL number and algorithm for the nuclear carbon flame.

1 case. We define the exact solution as a Strang splitting simulation run with
σ = 0.001. The flame speed is computed by tracking the speed of the location in
the flame where T = 2 × 109 K, which corresponds to roughly half of the peak
temperature in the flame. We will report the average flame speeds over the final
∼ 0.2× 10−4 s.

In Figure 8, we plot the flame speed vs. σ for each of the simulations. The hori-
zontal dashed line indicates the exact flame speed. We observe that for advective
CFL numbers of 0.25 and lower, the MISDC simulations are much more accurate
than the Strang splitting simulations. At σ = 0.5, both the Strang splitting and
MISDC-1 show significant inaccuracies compared to the MISDC-3. We note that
even though the MISDC-3 simulation is performing two additional iterations of the
corrector, the overall work done by the algorithm is less than twice the amount of
work done by MISDC-1, since the MAC projection, nodal projection, and velocity
update are each performed only once regardless of the value of kmax. Also, the
error of the MISDC-3 algorithm at σ = 0.5 is even less than Strang splitting at
σ = 0.1, which implies that a computationally efficient and accurate strategy can
potentially be to run with a larger σ with more than one iteration of the MISDC
corrector.

Even though the method is formally second-order with kmax = 1, we see that
additional iterations of the corrector can significantly improve the accuracy of the
solution. We wish to examine the behavior of this flame simulation with a large
value of σ and kmax > 1. We take data from the end of the MISDC-3, σ = 0.5
simulation and run for one additional time step, but with kmax = 10. In Figure
9, we plot the values of ρX(C) and ρh at tn+1 as a function of iteration number
k in the cell with the largest amount of Mg production. In this plot, we include
the solution at tn for reference, and the solution after the predictor is the value
reported at k = 0. The figure shows that the solution converges in a few iterations,
and changes very little for k ≥ 3. This is consistent with Figure 8, in which the
flame speed using MISDC-1 with σ = 0.5 is highly inaccurate, whereas the flame
speed using MISDC-3 with σ = 0.5 is much more accurate. Thus, we conclude
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Figure 9. Solution trajectories of ρX(C) and ρh as a function of k in the cell with the most vigorous
reactions in a fully developed carbon flame with σ = 0.5. The solution at tn is given for reference. The
solution after the predictor is the value reported at k = 0. The solution after k iterations of the corrector
follow.

that in order for the error to become acceptably small in this simulation, ∼ 3 or
more corrector iterations are required. Figures 10 and 11 contain the same data
as Figure 9, but for the σ = 0.25 and 0.05 cases, respectively. As the σ decreases,
fewer MISDC corrector iterations are required in order for the solution to approach
a steady value. In fact, for the σ = 0.25 case, the solution changes very little after
k = 1, and for the σ = 0.05 case, the solution changes very little after the MISDC
predictor (k = 0). The rate of convergence of SDC iterations for stiff problems is
discussed in [16] where it is shown that the number of iterations to achieve con-
vergence can grow substantially for stiff problems. Although the results here are
consistent with those in [16], we note that in the current context, the integration
of the stiffest terms is done to a prescribed precision rather than the backward Eu-
ler type discretization of the correction equation considered in [16]. Nevertheless,
there is clearly a trade-off between taking larger time steps and potentially requir-
ing more correction iterations in our approach. We are investigating monitoring
the convergence of the correction iterations to determine the optimally efficient
advective CFL number for future simulations, which will vary depending on the
nonlinearity of the PDE as well as the details of the flame dynamics.

6. Conclusions

We have developed a new thermodynamic coupling strategy for low Mach number
flows with detailed chemistry and transport that uses a multi-implicit spectral de-
ferred correction strategy. The method is second-order accurate and exhibits lower
error with less computational work than Strang splitting. We have demonstrated
the applicability to both terrestrial and astrophysical flames, including problems
with stiff chemical kinetics coupled to differential diffusion, as well as strongly
nonlinear reactions.
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Figure 10. Solution trajectories of ρX(C) and ρh as a function of k in the cell with the most vigorous
reactions in a fully developed carbon flame with σ = 0.25. The solution at tn is given for reference. The
solution after the predictor is the value reported at k = 0. The solution after k iterations of the corrector
follow.

The long term goal of this effort is to develop higher-order algorithms for low
Mach number reacting flows. There are, however, several issues we plan to address
as a prelude to moving to higher order. First, we would like to incorporate the veloc-
ity update and projection scheme in the iterative update. This will lead to better
accuracy, and reduce or eliminate the drift of the solution from the equation of
state. We would also like to implement a three-dimensional, adaptive mesh refine-
ment (AMR) version of the algorithm, including the subcycling in time required to
maintain a constant ∆x/∆t across refinement levels. These initial developments will
set the stage for developing higher-order algorithms. Higher-order discretizations
will be able to take better advantage of the next generation many-core computer
architectures, where the memory per core is reduced, and the communication time
between cores becomes more expensive relative to floating point arithmetic. We will
use the ideas from other higher-order SDC-based projection schemes [1, 17, 25] as
a starting point for this future work.
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reactions in a fully developed carbon flame with σ = 0.05. The solution at tn is given for reference. The
solution after the predictor is the value reported at k = 0. The solution after k iterations of the corrector
follow.

References

[1] A. S. Almgren, A. J. Aspden, J. B. Bell, and M. Minion, A fourth-order accurate projection
method for the incompressible Navier-Stokes equations, (2011). in preparation.

[2] A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. Welcome, A conservative adap-
tive projection method for the variable density incompressible Navier-Stokes equations, Journal of
Computational Physics, 142 (1998), pp. 1–46.

[3] U. M. Ascher and L. R. Petzold, Compute Methods for Ordinary Differential Equations and
Differential-Algebraic Equations, SIAM, Philadelphia, PA, 2000.

[4] U. M. Ascher, S. J. Ruuth, and R. J. Spiteri, Implicit-explicit Runge-Kutta methods for time-
dependent partial differential equations, Appl. Numer. Math., 25 (1997), pp. 151–167.

[5] J. B. Bell, M. S. Day, A. S. Almgren, M. J. Lijewski, and C. A. Rendleman, Adaptive numer-
ical simulation of turbulent premixed combustion, in Proceedings of the First MIT Conference on
Computational Fluid and Solid Mechanics, 2001.

[6] J. B. Bell, M. S. Day, C. A. Rendleman, S. E. Woosley, and M. A. Zingale, Adaptive low Mach
number simulations of nuclear flame microphysics, Journal of Computational Physics, 195 (2004),
pp. 677–694.

[7] A. Bourlioux, A. T. Layton, and M. L. Minion, High-order multi-implicit spectral deferred correc-
tion methods for problems of reactive flow, Journal of Computational Physics, 189 (2003), pp. 651–675.

[8] P. N. Brown, G. D. Byrne, and A. C. Hindmarsh, VODE: A variable coefficient ode solver, SIAM
J. Sci. Stat. Comput., 10 (1989), pp. 1038–1051.

[9] M. P. Calvo, J. de Frutos, and J. Novo, Linearly implicit Runge-Kutta methods for advection-
reaction-diffusion equations, Appl. Numer. Math., 37 (2001), pp. 535–549.

[10] G. R. Caughlan and W. A. Fowler, Thermonuclear reaction rates V,
Atomic Data and Nuclear Data Tables, 40 (1988), pp. 283–334. See also
http://www.phy.ornl.gov/astrophysics/data/cf88/index.html.

[11] M. S. Day and J. B. Bell, Numerical simulation of laminar reacting flows with complex chemistry,
Combust. Theory Modelling, 4 (2000), pp. 535–556.

[12] A. Dutt, L. Greengard, and V. Rokhlin, Spectral deferred correction methods for ordinary dif-
ferential equations, BIT, 40 (2000), pp. 241–266.

[13] M. Frenklach, H. Wang, M. Goldenberg, G. P. Smith, D. M. Golden, C. T. Bowman, R. K.
Hanson, W. C. Gardiner, and V. Lissianski, GRI-Mech—an optimized detailed chemical reaction
mechanism for methane combustion, Tech. Rep. GRI-95/0058, Gas Research Institute, 1995. http:
//www.me.berkeley.edu/gri_mech/.

[14] J. Geiser, Iterative splitting methods for differential equations, Chapman & Hall/CRC, 2011.
[15] F. H. Harlow and E. Welch, Numerical Calculation of Time-Dependent Viscous Incompressible

Flow of Fluids with Free Surface, Phys. Fluids, 8 (1965), p. 2182.
[16] J. Huang, J. Jia, and M. Minion, Accelerating the convergence of spectral deferred correction meth-

ods, Journal of Computational Physics, 214 (2006), pp. 633–656.
[17] S. Y. Kadioglu, R. Klein, and M. L. Minion, A fourth-order auxiliary variable projection method



December 8, 2011 12:54 Combustion Theory and Modelling paper

32 REFERENCES

for zero-Mach number gas dynamics, Journal of Computational Physics, 227 (2008), pp. 2012–2043.
[18] R. J. Kee, J. F. Grcar, M. D. Smooke, and J. A. Miller, PREMIX: A fortran program for

modeling steady, laminar, one-dimensional premixed flames, Technical Report SAND85-8240, Sandia
National Laboratories, Livermore, 1983.

[19] R. J. Kee, R. M. Ruply, E. Meeks, and J. A. Miller, Chemkin-III: A FORTRAN chemical kinetics
package for the analysis of gas-phase chemical and plasma kinetics, Technical Report SAND96-8216,
Sandia National Laboratories, Livermore, 1996.

[20] C. A. Kennedy and M. H. Carpenter, Additive Runge-Kutta schemes for convection-diffusion
reaction equations, Appl. Numer. Math., 44 (2002), pp. 139–181.

[21] D. Lanser and J. G. Verwer, Analysis of operator splitting for advectiondiffusionreaction problems
from air pollution modelling, J. Comput. Appl. Math., 111 (1999), p. 201216.

[22] A. T. Layton and M. L. Minion, Conservative multi-implicit spectral deferred correction methods
for reacting gas dynamics, Journal of Computational Physics, 194 (2004), pp. 697–715.

[23] A. Majda and J. A. Sethian, Derivation and numerical solution of the equations of low Mach
number combustion, Comb. Sci. Tech., 42 (1985), pp. 185–205.

[24] M. L. Minion, Semi-implicit spectral deferred correction methods for ordinary differential equations,
Comm. Math. Sci., 1 (2003), pp. 471–500.

[25] , Semi-implicit projection methods for incompressible flow based on spectral deferred correc-
tions, Appl. Numer. Math., 48 (2004), pp. 369–387.

[26] H. N. Najm and O. M. Knio, Modeling low Mach number reacting flow with detailed chemistry and
transport, J. Sci. Comput., 25 (2005), pp. 263–287.

[27] R. B. Pember, L. H. Howell, J. B. Bell, P. Colella, W. Y. Crutchfield, W. A. Fiveland,
and J. P. Jessee, An adaptive projection method for unsteady low-Mach number combustion, Comb.
Sci. Tech., 140 (1998), pp. 123–168.

[28] R. G. Rehm and H. R. Baum, The equations of motion for thermally driven buoyant flows, Journal
of Research of the National Bureau of Standards, 83 (1978), pp. 297–308.

[29] J. W. Shen and X. Zhong, Semi-implicit Runge-Kutta schemes for non-autonomous differential
equations in reactive flow computations, in Proceedings of the 27th AIAA Fluid Dynamics Conference,
June 1996.

[30] G. Strang, On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 8
(1968), pp. 506–517.

[31] F. X. Timmes, Physical Properties of Laminar Helium Deflagrations, Astrophysical Journal, 528
(2000), pp. 913–945. Source code obtained from http://cococubed.asu.edu/code pages/kap.shtml.

[32] F. X. Timmes and F. D. Swesty, The accuracy, consistency, and speed of an electron-positron
equation of state based on table interpolation of the helmholtz free energy, Astrophysical Journal
Supplement, 126 (2000), pp. 501–516.


